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SKIN-FRICTION MEASUREMENTS IN INCOMPRESSIBLE FLOW'

By Donarp W. Smrrun and Jouny 1. WaLkkr

SUMMARY

Firperiments have been conducted to measure in
incompressible flow the local surface-shear stress
and the average skin-friction coefficient for a turbu-
lent boundary layer on a smooth, flat plate having
zero pressure gradient.  The local surface-shear
stress was measured by a Aoating-element skin-
friction balance and also by a calibrated total head
tube located on the surface of the test wall.  The
average skin-friction coefficient was obtained from
boundary-layer velocity profiles.  The boundary-
layer profiles were also used to determine the location
of the virtual origin of the turbulent boundary layer.
Data were obtained for a range of Reynolds numbers
from 1 mallion to about 45 million with an attendant
change in Mach nwmber from 0.11 to 0.32.

The measured local skin-friction coefficients ob-
tained with the floating-element balance agree
well with those of Schultz-Grunow and Kempf
for Reynolds nwumbers wup to 45 million. The
measured average skin-friction coefficients agree
with those given by the Schoenherr curve in the
ranges of Reynolds numbers from 1 to 3 million
and 30 to 45 million. In the range of Reynolds
aumbers from 8 to 30 maillion the measured values
are less than those predicted by the Schoenherr
curve.

The results show that the “universal skin-friction
constants” proposed by Coles approach asymptoti-
cally a constant value at Reynolds numbers exceeding
21 million. Because of the scatter in the afore-
mentioned constants and the limited Reynolds
number range of the present investigation, there
s some doubt as to the validity of any turbulent
skin-friction law written on the basis of the present
results. Flence, no new friction law is proposed.

The frictional resistance of a flat plate was
caleulated by means of the momentum method ana

also the integrated measured local surface shear.
For Reynolds numbers from 1.4 million to 45 million
both methods give about the same result; whereas
at lower values of Beynolds number the momentum
method based on velocity profiles uncorrected for
the effects of turbulence results in a frictional
resistance as much as 4 percent higher than that
of the integrated shear.

The measurement of local surface shear by a
ealibrated Preston tube appears to be accurate
and inerpensive.  The calibration ax given by
DPreston maust be modified slightly, however, to yreld
the results obtained from the floating-clement skin-

friction balance.

INTRODUCTION

In recent years there has been a resurgence
of interest in the problem of the turbulent bound-
ary layer on a smooth flat plate having zero
pressure gradient along its length or breadth.
This interest falls into two categories. First, 1t
is necessary for the aeronautical designer to know
the effect of Reynolds number variation on the
average skin-friction coeflicient for the accurate
prediction of both drag and heat transfer. Sec-
ondly, there has been considerable controversy in
England among hydrodynamicists with regard to
the variation of average skin-friction coeflicient
with changing Reynolds number (see refs, 1
through 4) and hence the ability to project ship-
model test results to full-scale Reynolds numbers.

Up to this time much work has been done in
attempts to determine a so-called skin-frietion
law for incompressible fluids. Most of this work
has been experimental in nature, leading to a law
having empirically determined constants.

It was intended in the present work to determine
accurately the empirical constants required to
write a skin-friction law by making use of the

1 Supersedes NACA Technical Note 4231 by Donald W, Smith and John H. Walker.
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modern techniques now available for measuring
local surface-shear stress and by use of extremely
aceurate manometers for measuring the local
veloeity in the boundary layer. By the use of
sueh techniques, it was hoped that a frietion law
could be determined with an accuracy of 42 per-
cent particularly for large Reynolds numbers.
The investigation also included an evaluation
of the accuracy of a method, proposed by Preston
in reference 5, involving the use of a single surface
tube to determine local surface-shear stress.

NOTATION
, . - . T
«, local skin-friction coefficient, =
q
. . - 26
Cy average skin-friction coefficient, ==
;
- )—p .
o pressure coeflicient, P7P=, dimen
stonless ®
. . . . . TH*
« constant in skin-friction equation
1 4 *
U0
(, constant 1n skin-friction equation,
'V)") 80*—8
u* s
i inside diameter, .
D outside diameter, in.
6*
I shape parameter, n
k glope of wall law and veloeity-defect
law curves in the similarity region
M Muach number
I locul statie pressure, Ih/sq n.
P free-stream static pressure, Ih/sq in.
e local total pressure, Ib/sq in.
P free-stream total pressure, h/sq in.
q. free-streanm dynamie pressure, Ib/sq in.
V7
R, Reavnolds number, - =
Iy Reynolds number, -
14
T temperature, °F
" local veloeity, ft/see
.. . T .
w* friction velocity, /,'5, ft/sec
A
V free-stream velocity, ft/see
Wpip weight  flow of air ejected from

houndary-layer trip, Ib/see¢

x distance in the direction of flow from
the virtual origin of the turbulent
boundary layer, in.

Y vertical distance from wall, in.

z spanwise distance  across  channel,
measured from center line of chan-
nel, .

) boundary-layer  thickness, y  at

U .
— = 0.990, 1n.
v

5* boundaryv-layer displacement thick-
*l
ness, 5J (l o ;) d (!{)) in.
0 PV )
6 boundary-layer momentum thickness,
" , .
pu " 7y .
sl -5, l—ﬁ) { =-) 1.
J(»Pml( ",((5’
u absolute viscosity, Ib sec/fsq ft
v kinematic viscosity, sq ft/sce
p loeal density, 1b see?/ft!
P free-stream density, 1b sece?/ft*
T surface friction stress, Ihfsq ft
o(0) _u* when 22—1 .0 or when log e
U v v
0 (Sce fig. 15(a).)
V—u yu* 1 -
¢(1)—¢(0) - - when U (See fig. 15(b).)
EQUIPMENT
MODEL

The triction measurements were made on a flat
plate which formed one wall of a channel mounted
in the wind tunnel as shown in figure 1. The
test wall was mounted between a pair of end
plates to which was attached an adjustable
auxiliary plate approximately parallel to the test
wall.  "he auxibary plate could be adjusted to
change the longitudinal pressure gradient in the

A-21103

Ficure i.-—Boundary-laver channel in the test seetion of
the Ames 12-foot pressure wind tunnel.
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Frevre 2. -Three-view drawing of boundary-layer channel.

channel.  Preliminary measurements indicated
that without the auxiliary plate the longitudinal
pressure gradient along the test wall was not
uniform.

The test wall of the channel and the auxiliary
wall opposite were identical in eross section.  The
nose was elliptical with a ratio of major axis to
minor axis of 2.0. The trailing edge was sharp,
having a circular-ave section  tangent to the
surface 3 inches forward of the trailing edge
(fig. 2). The test wall was made of mild steel
polished to a fine finish.  Measurements with an
interferometer indicated that, generally, the test
wall had a surface finish of 20 to 40 microinches
(peak to wvalley). There were a few streamwise
scratches on the surface which were deeper than
this but it is believed that they had little or no
effeet on the flow.

The other three walls of the channel were made
of aluminum and had a finish about equal to that
of the test wall.  All holes and joints were sealed
to prevent the flow of air from the higher pressure
stream of the tunnel into the channel at other
than the front opening.

A permanent boundarv-layer trip was installed
near the leading edge of the test wall (fig. 3).
This trip was of the air ejection type used by

VA
3

R

i
/ \LOZ Diom. hole to within O of surface

[LLL

008 Diam onifice

Secton A-A

Note: All dimensions shown in inches

T
25(Typ}
1

25+
- 31—

Fravre 3.-- -Details of boundary-layer trip.
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Fage and Sargent (ref. 6). The trip will be dis-
cussed further in the section on test conditions.

WIND TUNNEL

This experimental investigation was done in
the Ames 12-foot pressure wind tunnel. The
wind tunnel is of the variable-density type pro-
viding Reynolds numbers up to 10 million per
foot at a Mach number of about 0.30 and Reynolds
numbers up to 1.7 million per foot at Mach num-
bers up to about 0.95. The turbulence level of
the wind-tunnel air stream is very low.

EXPERIMENTAL METHODS

The reliability of skin-friction measurements is
critically dependent upon the precision of the
measuring apparatus.  It, therefore, scems appro-
priate to discuss in some detail the characteristics
of the measuring apparatus, the degree of precision
attained, and the procedure used in condueting the
tests,

LOCAL VELOCITY MEASUREMENTS

The veloeity profiles through the boundary
layer were determined from measurements with a
total-pressure tube and a static-pressure orifice in
the plate, located at the same longitudinal station.
The total-pressure tube was very carefully con-
structed with a flattened end which was 0.007-inch
high and 0.080-inch wide. The wall thickness
was 0.002 inch.  (See fig. 4.)  The opening of the
tube was perpendicular to the direction of the free
stream and was free of burrs and imperfections.
This tube was mounted on a serew device which
allowed it to be moved perpendicular to the wall.
This serew was calibrated and found to be eapable

Note All dimensions shown n inches

etar & 0625 G0 =010 Wan stanless- -
stee! tope
e
See gl A —d : LS
n "l 25 Diom
= : 15 '
L
QEBK"_L—M——’_—-\
—g— L o—o2s -

Ficure 4.- -Details of veloeity probe and probe mounting
mechanism,

of positioning the tube to 0.001 inch. The zero
position of the tube was determined by an electrical
circuit which was energized when the total-head
tube made contact with the plate. This method
was qu te successful and was found to be capable
of consistently indicating the zero position to 0.001
inch. This accuracy was only possible if the wall
and tube were kept scrupulously clean and free of
all oxides, oil, and foreign matter.

The quantities measured were the local total
pressurs in the boundary layer, the statie pressure
at the wall, and the vertical distance from the
surface of the wall to the center line of the face of
the totel-pressure tube. It was assumed that the
static pressure was constant through the boundary
layer and that the total temperature in the bound-
ary laver was cqual to the total temperature in
the tunnel settling chamber.  Because of the small
vertical dimension of the total-pressure tube, no
correction was applied to the measured height of
the tube above the test wall to account for the
apparer t displacement of the tube resulting from
the totud-pressure gradient through the boundary
laver. No correction was applied to the velocity
profiles for the effect of turbulence.

An a lditional probe was constructed for use in
the determination of the location of boundary-
layer transition. The longitudinal variation of
the surface velocity near the leading edge of the
plate was measured.  This device was capable of
traversing the plate in a streamwise direction from
0.5 inch aft of the leading edge to about 3.25 inches
aft of the leading edge.  The local total pressure
was measured with a probe having the same
dimensions as the one previously described (see
tig. 4) ¢nd the static pressure was measured with
a 0.035-inch-diameter static-pressure probe located
1.0 inch away from the surface of the plate and at
the same longitudinal station as the total-pressure
probe. Local velocities were computed from these
measurcments using the same assumptions as were
made fcr the surveys through the boundary layer.

LOCAL SURFACE-SHEAR MEASUREMENT

The Jocal surface-shear stress was measured by
two difierent techniques. The first of these made
use of « floating-element deviee which measured
the shear stress directly. The second technique
made use of a calibrated total-pressure tube
mounted on the surface of the wall as proposed by
J. H. Preston.  Preston made measurements with
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air flow in a pipe, whereas the present measure-
ments with surface tubes were made to validate
and determine the accuracy of the technique for
air flow on a flat plate and to verify Preston’s
calibration of the tubes.

Floating-element device.—The local surface-
shear stress was measured by a floating-element-
type device similar to that used by Dhawan (ref. 7)
and others. The floating-clement technique was
also used by Schultz-Grunow (ref. 8) and Kempf
(ref. 9) in their historically important surface-
shear measurements.

Sinee little is known about the effect of change
of the size of gap around the floating element on
the measured surface shear, it was decided to con-
struct a device whose element could be repositioned
and centered in the gap. Both Schultz-Grunow
and Kempf used such a device while Dhawan and
others used a simple deflection-type instrument.
In the present unit the floating element was re-
positioned by a small, powerful electromagnet.
The position of the clement was indicated by a
differential transformer capable of indicating
movement of the floating element to an accuracy
of a few millionths of an inch.  When the position
indicator showed that the floating element had
started to move from its no-load neutral position,
the strength of the electromagnet was varied until
the element returned to its no-load neutral posi-
tion. Since the electromagnetic foree was equal
and opposite to the drag force exerted on the cle-
ment, the average surface-shear stress on the
floating clement could be deduced from the meas-
ured electromagnetic foree and a predetermined
calibration.

The shear-stress measuring device was capable
of indicating the drag force on the element with a
sensitivity of about 0.02107* pounds for a range
of force from 0 to about 30X 107* pounds. The
accuracy of determining the load under test con-
ditions is believed to be within +2 percent of
applied load throughout the load range en-
countered in the tests. Calibrations of the ele-
ment  displayed extremely good repeatability.
The measured data were corrected for effeets of
change in temperature of the unit.

In figure 5 is presented a detailed drawing of
the shear-stress measuring device. This device
consisted of a 2-inch-diameter plate which was
mounted on very limber flexure pivots.  The
flexure pivots were, in turn, attached to a sturdy

support frame which was mounted on the working
wall of the boundary-layer channel. As may be
seen in figure 5, the support frame and movable
plate were mounted on the channel wall in an
integral unit. The 2-inch-diameter movable plate
was centered in a 2.010-inch-diameter hole in the
support frame with its working surface set flush
with the working surface of the support frame.
The surface of the floating-element unit was care-
fully alined flush with the surface of the channel
wall using both dial and interferometric indicators.
It was possible to position the element surface
within about 4 0.00005 inch by means of the dial
indicator.

Tests were made to study the effects of small
variations in flushness of the floating element with
the surrounding fixed surface. Measurements of
surface shear at identical test conditions were
made for a range of positions of the floating
clement, both depressed below and protruding
above the fixed surface of the plate. It was found
that the surface of the floating element could be
depressed as much as 0.0005 inch without any
change in the surface shear. However, when the
element protruded above the surface of the wall,
there were noticeable deviations in the neasured
shear force. Consequently, the surface element
was always maintained flush with or slightly below
the surface of the channel wall.

The entire floating-element unit was constructed
of Invar in order to minimize the effect of temper-
ature changes on the calibration of the unit. The
faces of both the support frame and the floating
plate were very ecarefully lapped to ensure both
a fine surface finish and also flat surfaces having
sharp edges on the inside and outside diameters of
the umits. Interferometric measurements indi-
cated that the surface had a peak-to-valley rough-
ness of about 10 to 20 microinches and a flatness of
about 20 to 40 microinches. The floating-element
unit was made into a pressure-tight capsule to
prevent the flow of high-pressure air from the
tunnel main flow into the higher speed flow of the
boundary-layer channel. Damping of the floating
element was achieved by using 20,000 centistoke
oil in a cup machined integral with the back of the
clement. The cup was adjusted to have 0.005-
inch clearance with the displacement indicator
and clectromagnet which are fixed to the support
frame (sce fig. 5).
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The static pressure in the gap between the float-
g element and the channel wall was measured by
nieans of six static orifices in the gap (see fig. 5)
and a buoyancy correction was applied to the
surface-shear force measured on the element. This
correction was always less than 1 percent of the
applied foree on the element.

Surface-tube shear-stress device.—In 1953 a
very simple technique for measuring surface-shear
stress was proposed by J. H. Preston (see ref. 5).
This technique made use of the total pressure
measured by a round total-head tube mounted
flush with the surface (sce fig. 6). The pressure
measured by the total-head tube in conjunction
with the surface static pressure measured at the
same location along the plate was calibrated by
Preston in terms of the local surface-shear stress.

Two total-head tubes having outside diameters
of 0.0300 inch and 0.1217 inch, respectively, were

Tube |1 ¢=.0180 0=.0300
Tube 2 &=0730 D=1217
Detall A

062 Diam
static pressure
orifice

)

350 Diam

Note: All dimensions are shown in inches

See detail A 125 Diam  tube ‘

QW

\

fe———6.00 Diom ——
Section A-A

Fraure 6. —Details of the Preston surface-shear tubes,

JO93T4—-59-- 2

used in the present investigation.  The tubes had
a ratio of inside diameter 1o outside diameter of
0.600, the same proportions used by Preston.
Care was taken to make the mouth of the tube
perpendicular to the longitudinal axis of the tube.
The equations and assumptions used in the redue-
tion of the measured data are given in reference 5

SENSITIVE MANOMETER

In order to measure the veloeities in the bound-
ary Jayer and the pressures associated with the
surface-tube shear-stress deviee with sufficient ace-
curacy to give an over-all accuracy of results of
1 percent or better, it was necessary to devise a
manometer capable of measuring very small pres-
sure differences over a large range of pressure
difference.  Such a device was designed and built
and was found to be eapable of indicating a pres-
sure difference of about 0.06 pound per square
foot with an accuracy of £0.12 pound per square
foot. for pressure differences as large as 600 pounds
per square foot.

This manometer was of the U-tube type with
a float in the low-pressure leg of the system. Tlus
flont had a steel slug incorporated in 1t and
sorvo-operated follower mounted on a lead serew
alongside the manometer leg to indicate the posi-
tion of the slug in the leg of the manometer. The
lead serew was calibrated in terms of the pressure
difference applied across the two legs of the ma-
nometer.  The glass tubes used in this manometer
were precision bored to have an inside diameter
of 0.750 +0.001 inch. The fluid (tetrabromo-
cthane) in the manometer was maintained at a
fixed temperature of 107° F +4° I,

The hore of cach mannmotm' tube was coated
with Dri Film, a General Eleetrie silicone produet,
to reduce the effect of the meniscus of the fluid on
the pressure readings.  Calculations show that
the capillary effect of the meniscus could result in
a maximum error of about 0.2 pound per square
foot in the pressure reading if the angle of con
tact between the manometer fluid and the glass
tube varied from 0° to 90°.  Beceause of the Dri
Film coating it is felt that the error in measured
pressure due to capillary forces has been reduced
to a value considerably smaller than the accuracy
of the indicating svstem of the manometer.

Due to the fact that this instrument had a large
range of indication and extremely high sensitivity,
the calibration of the instrument posed some dif-
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ficulty. Since there was no instrument available
to use as a standard, it was decided to determine
the specifie gravity of the fluid at the stabilized
temperature (107° F) and use this as the calibra-
tion of the instrument in conjunction with an
accurate calibration of the lead screw follower.

TEST CONDITIONS

The Reynolds number in the present tests
varied from about 1 million to 10 million per foot
This range of Reynolds num-
bers was obtained by varving the tunnel total
pressure from 8 to 80 pounds per square inch
absolute and the Mach number from 0.11 to 0.32.
These values of Mach number are in the range
where compressibility effects in the air flow are
generally considered insignificant.

of channel length.

VELOCITY PROFILES

The boundary-layer velocity profiles were meas-
ured at stations 1.312, 2.312, 3.312, and 4.312
feet aft of the leading edge of the channel wall.
The most forward measurement station (0.312
fect aft of leading edge) was not used since the
veloceity profiles were distorted and were of no
interest.  The longitudinal locations used pro-
vided Revnolds numbers based on the distance

A0 e

"NATIONAL AERONAUTICE

AND SPACE ADMINISTRATION

from the leading edge from about 1 million to
about 43 million.

SURFACE-SHEAR STRESS

Local surface-shear stress was measured at sta-
tions 1.5, 2.5, 3.5, and 4.5 feet aft of the leading
edge of tae channel wall as is shown in figure 2.
Again the most forward measuring station (0.5
feet aft of the leading edge) was not used because
of the distorted velocity profiles. The Reynolds
number based on the distance of these stations
from the leading edge varied from about 1.5
million 1o 45 million.

LONGITUDINAL PRESSURE GRADIENT

The longitudinal static-pressure gradient meas-
ured on the test surface of the boundary-laver
channel is presented in figure 7. At the leading
edge of :he channel there was a pressure peak
which 1s not shown in the figure. Throughout
the major portion of the channel, where measure-
nents were made, the local static pressure varied
less than about 0.5 percent of the veloeity head
from the “eference statie pressure at the longitudi-
nal midpoint of the channel.  As may be seen in
figure 7 there was little effect of change i either
Mach nuvmber or tunnel total pressure on the
pressure gradient.

e ; [ ‘ :
) i W b M=0.27 \ ]‘ J [
. —T © p/m=80.5\ psia I
-0 ; ] Jo 29.56
‘ J ‘o 14.90
i A — T
—_ b4 i | :
L o o ‘ —9 13 ' A —g g —Qr ~-
3 ‘1 N : %
T l | { ; ‘
& 2ol l Lot
o
2-20 -— e S T
[ l
o I~ + =4
o) oG—o—o— > > > L © >y
| :
T T
20 | 4 =30 psio
. o M=0.151
o 218
40 : <o 267
! ; I : a 31
R i { H
0 4 8 12 16 20 24 28 32 23 40 44 48 52 56 60

Lengitudinal location, x, in.

Fravre 7.—Longitudinal pressure gradient in boundary-layer channel.
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BOUNDARY-LAYER TRIP

A boundary-layer trip was provided to assure
a two-dimensional turbulent boundary layer near
the leading edge of the working wall of the channel.
An air-injection-type trip was chosen because it
could be readily varied in strength to trip the
boundary layer with the least amount of disturb-
ance. The geometry of the trip is given in figure 3.

The quantity of air to be ejected from the trip
was determined using longitudinal velocity surveys
which were made at the surface of the plate with
a total-pressure and a static-pressure tube. Typi-
cal longitudinal velocity distributions at the plate
surface for various amounts of ejected air are
presented in figure 8. When no air was ejected

T | ]
M A A A
o4 \
| LT3 ‘
R NEEE Gk 8 - ﬁ%ﬂfﬁ%

v 2 T ’ #ieip, Ibrsec
afb—fel? o] L o 0.0000 —
£ 5 | o .0018
e T=" T ! o .0028 1

T 1
2—e Sy & 0034 —
TS > 0040 -
—ia T2 - : v 0049 j
L s ] l | l . 1 I
0 4 ) 12 6 20 24 28 32 36

Longitudinal distance, x,:n.

Ifrgure 8 —Kffect of varving quantity of boundary-
laver-trip air on local veloeity near channel wall.

from the trip, it appeared that some type of sep-
aration phenomenon was present. However, when
air was ejected from the trip, this phenomenon
disappeared and it scemed that the boundary
layer beeame turbulent within about 0.25 inch of
the trip. It was not possible to keep the probe
on the surface of the wall forward of the maximum-
thickness point and therefore the data forward of
this point do not represent surface measurements.

For the Mach number and total-pressure con-
dition in figure 8, the air quantity
selected as that which assured a turbulent boundary
layer with the least distortion was 0.0034 pound
per second. A similar set of surveys was made
for cach test condition and the air quantities
selected in this manner were utilized for their par-
ticular test conditions.

TWO-DIMENSIONALITY OF FLOW

As was previously mentioned the walls of the
channel were capable of being moved with respect

to one another to provide for adjustment of the
longitudinal static-pressure gradient. These walls
were also adjusted so that the static pressure did
not vary in the transverse direction.

To check the two-dimensionality of the flow,
boundary-layer velocity profiles were measured at
three spanwise locations at the same longitudinal
station. The spanwise locations chosen for the
measurements were at the center line of the work-
ing wall of the channel and at 7 inches either side
of the eenter line. These three profiles for several

test conditions are presented in figure 9. Their
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I'ravre 9.--Effect of spanwise location in boundary-layer
channel on velocity profile.

similarity indicates a flow which closely approxi-
mates two-dimensional flow.

DETERMINATION OF VIRTUAL ORIGIN OF
TURBULENCE

Physically, the turbulent boundary layer can
not start with zero thickness and the virtual origin
of the turbulent layer must therefore be estimated.
One simple method for making such an estimate
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was proposed by Rubesin, et al. (ref. 10}, and this O AT S [ =
method has been used in the present report. ol =022
The virtual origin of turbulence was estimated sl e R’"xg'?'s
by plotting log 28 versus log & (where & is the dis- “l4e2rs 333
tance from the leading edge of the test surface) 7 :22432 2:3'8 7 1& {
and determining the magnitude of the change 1 2 ,6 P L b1
required to make the slope of the line equal to some 5, AR
reference value. ‘ p
The reference value of the slope, d (log 26)/ 4 " : £
o (log ), which was used was the mean value of 3 :
the slopes computed for each of four logarithmic A _F
laws presented i reference 110 (The law by 2 gl lel 1l 12 '
Schultz-Grunow was omitted.) The reference N E“&*%*% * [‘ :
value of slope used for the estimation of the virtual s ST # o)
origin varied from about 0.826 to 0.850 for a varia- o oz 34 '6_5, 789 10(Foraxi875in
tion of Revnolds number per foot from about 1 o] " 7,280 psia I 71
million to 10 million. S . '7,ngo);lx|o-6
It was found that for all conditions at which sl 01575 58
(ests were made, the change i.n rowas \\:ithin +1 ?:ggg;g '.2122 1 1]
inch and in many cases was within 4% inch. On “[asi75 18.89 [
the basis of this analysis and due to the fact that y6
the results sceattered on both sides of zero, it was 5.5 1 7
concluded that the leading edge of the working wall 7
of the ehannel could be used as the virtual origin of “ g 2
the turbulent houndary laver and the distance 3
from the lending edge to the point of measurement P 5
could be used as the reference distance for E—é *—E—g
Revnolds number. ! E:R_:%:% |
> > X X e oa> b
PRESENTATION AND DISCUSSION OF RESULTS N Sy 7 89 10(Forazis750n)
1O T
The prineipal results of the investigation are o L ;’;ozg%‘g‘“ ’
presented in tables I, T, and ITI. Table I contains Tl sin Rxi0°€
meastred veloeity profile data for all test condi- ‘8::: g“;g 2?;3
tions.  Table IT containg the measured values of 7 i
local skin-friction coeflicient as a function of H AP
Reynolds number.  In table 1IT is presented a ©
summary of the major boundary-layer parameters 5 yumr
obtained from the boundary-layver veloeity pro- 4 81 f
ﬁl(‘S. 3 P /‘
There are presented in figure 10 some of the ' '
veloeity profiles tabulated in table 1. These pro- 2T T y
files are typical of the profiles obtained for all test N §:E
conditions.  All of the measured velocity profiles e v‘r ™
have been mechanically integrated to obtain both o 1 2 3 4 6 7 B8 9 10(Forx=39.75m)
the boundaryv-laver displacement thickness, §*, a

and momentum thickness, 8. The ratio of these
two parameters, known as the shape parameter,
H, has been computed and tabulated in table TIT.
These results are presented in figure 11 as a fune-
tion of the Revnolds number.  As was expected

(a) pro - 15 psia, M -0.22

(b pro="80 psia, M =011
(¢) Pro; = 80 psia, M=0.28

Fiaore 10, -Boundary-layer veloeity profiles.
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the shape parameter decreased as the Reynolds
number increased.  There appears to be large
scatter in the data but this is not surprising since
it is very difficult to obtain accurate values for
either 6% or . The line identified as table TV in
this ficure and in figures 12 and 13 will be dis-
cussed in a subsequent section.

The variation of the average skin-friction coef-
ficient with change in Reynolds number is pre-
sented in figure 12, The average skin frietion, (',
was computed using the momentum thickness ob-
tained from integration of the velocity profiles
(presented in table 1IT) measured at several sta-
tions along the wall of the channel. The Schoen-
herr line obtained from reference 11 will be dis-
cussed in a subsequent section.

There are presented in figure 13 the results of
the measurement of the surface-shear stress.
These results are tabulated in table IT.  The
surface-shear stress was measured by the floating-
element techuique previously described.

Variation of shape parameter with change in Reynolds mumber, .

COMPUTATION OF DRAG BY MOMENTUM DEFECT AND BY
INTEGRATION OF LOCAL SKIN FRICTION

The friction drag of a surface can be computed
by two methods. The first of these methods in-
volves computation, by mechanieal integration of
thie boundarv-layer profile, of the loss of momen-
tum in the boundary layer which is directly con-
vertible 1o the drag loss (data of fig. 12). The
gecond method consists of integration of the local
surface shear along the surface which is also
directly convertible to the drag loss (data of fig.
13). A difficulty is involved in the second method
in that it is necessary to know the local skin frie-
tion right up to the origin of the turbulent bound-
ary layer. To circumvent this problem in the
present investigation the drag at a point 18 inches
aft of the leading edge of the surface of the channel
was assumed {o be that obtained by the momentum
defeet method.  The local skin friction was then
integrated and added to the assumed value of
drag which resulted in a total drag at a particular
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I'raere 13,

longitudinal position on the channel wall. There
arc presented in figure 14 the results of these com-
putatious. The drag obtained by the momentum
defect method is compared with that obtained by
the integration of the local surface-shear stresses.
Again it 1s pointed out that the drag at a point

Variation of local skin-frietion coefficient with change in Reynolds number, R, ; foating-clement technique,

18 inch s aft of the leading edge is assumed to be
the same for both methods. It is apparent that
at the smaller values of Reynolds number there is
a discrepancy between the drag obtained by the
two mecthods. At a Reynolds number of about
6.5 million the drag obtained from the integrated
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Friere 14.-—Comparison of drag computed by both the
. momentum defeet and integrated surface-shear methods.
surface shear is about 4 percent higher than that
obtained by the momentum defeet, while at the
highest Reynolds number of about 44 million the
discrepancy between the two drags is reduced to
almost zero.

METHOD OF DATA ANALYSIS

The aforementioned data will be discussed fur-
ther in conjunction with a method of boundary-
layer analysis previously used by Coles and others
and described in some detail in reference 12, It is
not felt that a detailed reiteration of the method
is necessary here. The use of this method facili-
tates the analysis of the data of the present
investigation in a systematic manner.

The equations of reference 12 which are used
in the present analysis are given below in the
notation of this report.

: o) T 2y O
(=20 e DM [l _(FL?TI) \/ Y
171 0%\,
i) ]
kot ITE o,
Colt =200 N1 \/7>

A
oG \/f
Yl 2
Ot
Rpm==

The analysis depends on the evaluation of the
parameters k, ¢(1), 4, and (, which appesr in
the above equations.

The first step in the analysis is to express the
veloeity profiles in terms of the “law of the wall”
[uju*=f(yu*/»)] and the “velocity defect law”
[(V —uw) fu*=Ff(yu*/6*V)]. A typical profile in
terms of the “wall law” is presented n figure 15(a)
while the same profile in terms of the “velocity
defeet law” is presented in figure 15(b). As may
be noted on these figures both curves have a
linear region when plotted on a semilogarithmic
basis. From a comparison of the slopes of the
linear portions of these curves it appears that
they both have the same value. This portion of
the curves is known in the literature as the region
of overlap of the two laws or the region of similarity
of the boundary layer. The existence of this
region of similarity makes it possible to analyze
the turbulent boundary layer quite readily.  With
the velocity profiles in this form the parameters
k and ¢(1) may be evaluated. The parameter k
is the slope of the eurves in the similarity region.
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The parameter ¢(1) is the sum of the value of
¢(0) obtained from the wall law as shown in
figure 15(a) and the value of ¢(1)—o(0) obtained
from the velocity defect law as shown in figure
15(h). The two parameters (') and €, are obtained
from the velocity profile parameters as indicated
by the definition given in the Notation section.
The values of the four parameters k, o(1), (',
and (% may then be inserted in the skin-friction
equations given previously to caleulate a frictional
resistunce law for a fully developed turbulent
boundary layer which starts at some point with
zero thickness and grows as a fully developed
turbulent boundary layer.

The variation of the parameters &, ¢(0) and
e(1) —¢(0) with Reynolds number, £25 (based on
the  boundary-laver momentum thickness), is
shown in figure 16, while the variation with
£l of 'y and (% is shown in figure 17. Tt is ex-
peeted that these turbulent boundary-layer pa-
rameters will become independent of Reynolds
number if they are determined from measure-
ments at large enough Revnolds numbers on an
acrodynamically smooth plate in flow having
zero pressure gradient. This appears 1o be the
case in the present experiments for Reyvuolds
numbers, 2, than about 26 thousand
or 2 Reynolds number, f7,, of about 21 million.
The average value of the constants in the range
of Reynolds number independence were used in
conjunction with the skin-friction equations given
previously to make caleulations of a frictional
law.  The values of the
used in this ealculation were:

greater

resistanee consfants

e(1) —(0)=:3.00
e(0) =7.15
k=5.00

(1=:4.00
(=259

The results of this caleulation are presented in
table TV,

As a result of the seatter in the values of these
parameters, which were obtained from the ex-
perimental data, and the limited Revnolds number
range attained in this investigation, there is some
doubt as to the absolute values of the parameters
histed above. Henee, a new frictional resistance
law is not being proposed although the results
of the calculation have been tabulated and pre-
sented in this form to afford a basis of com-

35 | p, =14.75 psia
1 7o
v =024 L
30 Ry = 333%108
“Tlx =2775in.
25—+
; ; s
t ! o'l
) 20 L3
d
)
5 At
o 1o ~-U—’{=Hog{—u+¢(0)
+11
S5+
$(0)
l 1 (a)
o ) 100 1000 10000
g
v
0 T
p’m=l4.?5 psia hk [T I)I
M=0214 &S] #-¢(0
2 Ry =3.33x10° 2 T
. x =27.75in. e A4 *I T
L.2a0
o Al
6 Y | i
V-u
—
8 I
T2 [p00-910)) 4109 6 2]
10 H
1
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//\J
A (b}
1001 ol 10 10
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(a) Wall law,
(b) Velocity defect law.

Frourr 15 —Boundary-layer velocity profiles in terms
of the “wvall law” and the “velocity defeet law.”

parison between the measured data of the present
investigation and those of previous investigations.

COMPARISON OF COMPUTED FRICTION LAW WITH
MEASURED DATA

The results of the frictional resistance law
calculations presented in table IV are also pre-
sented in figures 11, 12, and 13.  As was pre-
viously stated, constants applicable only in the
range of Revnolds number above about 21 mil-
lion were vsed in this caleulation.

Shape parameter.—As may be scen in figure 11,
the compiated values of the shape parameter,
8*/8 presonted in  table IV represent those
computed from the measured velocity profiles
only at the highest Reynolds numbers.  This is
not difficult to understand when it is realized
that the computed value of the shape parameter
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is dependent prineipally on €'y and €%, both of  skin-friction coeflicients is represented generally

which change markedly below Reyvnolds numbers by a change of skin feiction of about +1 pereent,
of about 21 million from the asymptotic value  and this s also about the variation of the measured
used in the computation (see fig. 17). 0 e
Average and local skin-friction coefficient. --It — O =19esia
A 5 o 1 2022 :
appears i figures 12 and 13 that the computed 2 in R,xI0%6 Vi
alves of s avernoe <danofrietion coeffieie — 01375 197 A
values of both l]u averg sl\m‘ l'n( tion coefficient Al oz773 333 ¥ 7
and the local skin-friction coeflicient represent the ©3975 49
measured values quite well for Reynolds numbers s 8575 648
as low as about five or six mithon.  The scatter in Lo 2
. 2 DIeSe 'd for bo Laverage e 8 o N N N
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Fiaurn 20.—Comparison of previows existing data with the measured data and with the curve computed using the
constantx derived from the present data.

from the computed skin-friction coetlicient  at
higher Reynolds numbers.

Law of the wall and velocity-defect law. -In
figures 18 and 19 it is shown that the wall law and
velocity-defeet Inw derived using the value of the
constants in the range of Reynolds number in-
dependence do not represent the measured data
except at the higher values of Reynolds number.
Here again this is easily understood after inspec-
tion of the variation with Reynolds number, shown
in figure 16, of the parameters used in both laws.

COMPARISON OF MEASURED DATA AND COMPUTED FRIC-
TION LAW WITH MEASURED DATA OF OTHER INVESTIGA-
TIONS

Local skin-friction coefficients.—There are pre-
sented in figure 20 the local skin-frietion coefli-
cionts measured by Schultz-Grunow (rel. 8) in an
air channel and by Kempf (ref. 9) on a pontoon in
water. In the region of Reynolds number where
the two sets of data overlap, Kempfl’s data appear
to be somewhat higher than those of Schultz-

Grunow. In this region of overlap, Schultz-

Grunow’s data agree quite well with the skin-

friction balance results.  Comparison of the meas-

ured local skin-friction-coefficient. data of the
present investigation with those of both Schultz-

Grunow and Kempl indicates remarkable agree-

ment in the Reynolds number range of the in-

vestigation when it is considered that the data
came from three grossly different picees of equip-
ment. Ilere, as in figure 13, there 13 a tendeney
for the measured data to be higher than the com-

puted friction taw (table IV) for Reynolds numbers
smaller than about 4 or 5 mitlion.  However, the
computed friction law does mateh the measured
data quite well for a range of Reynolds numbers
from 4 or 5 milion to about 60 million. For
Reynolds numbers above 60 million Kempf's data
appear to fall below the line representing the
computed law.

Average skin-friction coeficient. —\ comparison
of the measured average skin-friction coeflicients
of the present investigation with the Schoenherr
lime (ref. 11) is presented in figure 12, The
Schoenherr line gives larger values of skin frietion
than were measured in the present investigation
for Reynolds numbers from 3 to 30 million, but
became equal to the measured values at Reynolds
number from 1 to 3 million and from 30 to 45
million. The measured data are best represented
by the Schoenherr line in the range of Reynolds
numbers from 1 to 3 million and by the computed
faw (table IV) in the range of Reynolds numbers
from 5 to 45 million.

Figure 21 is a reproduction of a figure presented
in reference 11 with the exeeption that the com-
puted friction law of the present investigation is
also presented for comparison.  The friction Jaw
as computed from the data of the present investi-
gation gives values of skin-friction coefficient as
much as 8 percent lower than the Schoenherr
line at a Reynolds number of 1 million and as
much as 6 percent higher at a Revnolds number

of 1310°% Similar to previous comparisons he-
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tween the computed curve and the measured data,
the measured data are somewhat higher in the
low Revnolds number range.  In the range of
Reynolds number from 5 million to 100 million
the computed law seems to represent the data
quite well.  Bevond a Reynolds number of 100
million there is only one set of data available to
compare with the computed values and they lie
below the computed line for all higher values of
Reyvnolds number.

A SIMPLE METHOD FOR DETERMINING LOCAL SURFACE-
SHEAR STRESS IN A TURBULENT BOUNDARY LAYER

There are presented in figure 22 the results of
measurcments  of local skin-friction  coeflicient
using a calibrated total-head tube as proposed by
J. 11 Preston in 1953 and previously deseribed in
the section on experimental methods.  On the
same figure is presented a line representing the
faired value of the data measured with the floating-
clement deviee as presented previously in figure 133,
In general, the Preston tube deviee indicates a
smaller skin {riction than the floating-element
device. However, the results of both methods can
be made to agree quite well if the calibration
presented by Preston in reference 5 is modified
slightly.

From the work of Preston it has been shown
that the calibration of the tubes is valid only if

. (p—p)d* .
the value of the expression logp pr is
= 1pp*

Variation of local skin-friction cocfficient with change in Reynolds number, R.; Preston tube teehnique.

-

greater than about 5.0 but less than about 7.5.
These limiting values also seem to be the limiting
values obtained in the present investigation. When
(1)'47)1{1)(17 falls
outside of these limits the measured skin friction
immediately varies away from the general trend
of similar data measured at the same Reyvnolds
number when the value of the logarithmie expres-

the value of the expression log,

sion falls within the preseribed values.

It appears that the Preston tube deviee can be
quite useful in measuring the local surface-shear
stress in a turbulent boundary layer where the
longitudinal static-pressure gradient is zero. Not
only does it appear to be accurate but it is extreme-
Iy simple and inexpensive to construct.  Also, the
indicating equipment is simple and readily avail-
able to most investigators.

For Reynolds numbers greater than 2.5 million
the revised calibration suggested by the measured
surface-shear stress data obtained on the Hoating-
clement device is

Tt

log o 4PV2::——1.3(‘)(3-¢‘~H.877 log,o

as compared with Preston’s ealibration of reference

DR

(p—p)d®
4pp*

(p—p)*

-—1.396+40.875 logy, 4

For Reynolds numbers lower than 2.5 million use
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of the revised ealibration results in values of sur-
face shear which are lower than the measured data.

CONCLUDING REMARKS

The measured loeal skin-friction  cocflicients
obtained from the floating-clement skin-friction
balanee agree well with the long aceepted experi-
mental data of Schultz-Grunow and Kempf in the
range of Revnolds numbers from about 1 million
to about 45 million.

The average skin-friction coeflicients deduced
from the measured velocity profiles are generally
helow the Schoenherr line except at the lowest
values of Reyvnolds number.  As the Revnolds
number approached 45 million, the highest value
attained i the present investigation, the meas-
ured average skin friction became equal to the
value predicted by Schoenherr.  However, the
rate of change of the measured average skin-
friction coeflicient with increasing Reynolds num-
ber is smaller than that predicted by Schoenherr.

The frictional drag experienced by a flat-plate
surfuce has been computed by both the momen-
tum-defect method and the integration of the local
surfuce shear. At values of Reynolds number
from 14 million to 45 million the results of both
methods are in good agreement but show a dis-
crepaney of as mueh as 4 percent in the range of
Revnolds numbers from 2 to 6 million,

I the light of the data of the present investiga-
tion a new frictional resistance law for a smooth
plate having zero pressure gradient may be written,
However, there is some doubt as to the absolute
values of the experimentally determined param-
cters which must be used in conjunetion with the
skin-friction  equations to write a law. These
parameters appear to approach asvmptotically a
constant value, as was anticipated.  As a result
of the seatter in the values of the parameters ob-
tained from the experimental data and the limited
Revnolds number range attained in the investiga-
tion, there seews to be some doubt as to the
validity of a Iaw written on the basis of these
parameters,

The local skin friction determined {rom measure-
ments utilizing a calibrated pitot tube mounted
on the surface as proposed by J. 1. Preston had a
lower value than that measured by the floating-
clement skin-friction balance.  However, a small
adjustment of Preston’s calibration of the pitot
tube brought the two results into good agreement.

NATIONAL AERONATUTICS AND SPACE ADMINISTRATION

The Preston pitot tube appears to be an inexpen-
sive and accurate device for making loeal surface-
shear-stress measurements.

Aves REsEarcH (ENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Mor-rrr Fiewn, Caviv., Dee. 9, 1957
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